

Available online at www.sciencedirect.com



Tetrahedron Letters

Tetrahedron Letters 49 (2008) 4178-4181

# Fe(III)- and Hg(II)-selective dual channel fluorescence of a rhodamine–azacrown ether conjugate

Xuan Zhang, Yasuhiro Shiraishi\*, Takayuki Hirai

Research Center for Solar Energy Chemistry, and Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan

> Received 7 March 2008; revised 12 April 2008; accepted 17 April 2008 Available online 22 April 2008

## Abstract

A rhodamine-azacrown ether conjugate (1) demonstrates Fe(III)-selective green fluorescence, while showing Hg(II)-selective orange fluorescence. This is the first example of rhodamine-based fluorescent probe that shows dual channel fluorescence for two different metal cations.

© 2008 Elsevier Ltd. All rights reserved.

Fluorometric detection of ionic species has attracted a great deal of attention.<sup>1</sup> Of particular interest is the development of fluorescent probes for heavy and transition metal cations, such as  $Hg^{2+}$  and  $Fe^{3+}$ , due to their biological and environmental importance.<sup>2</sup>  $Hg^{2+}$  is one of the most hazardous components in the environment,<sup>3</sup> and  $Fe^{3+}$  plays a pivotal role in many biochemical processes in a cellular level.<sup>4</sup> A number of fluorescent probes for the detection of  $Hg^{2+}$  and  $Fe^{3+}$  have been proposed so far.<sup>5,6</sup> However, most of these probes show fluorescence quenching (turn-off) response,<sup>5</sup> and fluorescent probes that show fluorescence enhancement (turn-on) response are still rare.<sup>6</sup>

Rhodamine is a dye used extensively as a fluorescent labeling reagent due to its excellent photophysical properties, such as long absorption and emission wavelengths elongated to visible region, high absorption coefficient, and high fluorescence quantum yield.<sup>7</sup> Recently, various rhodamine-based turn-on fluorescent probes for  $Hg^{2+}$  or  $Fe^{3+}$  have been proposed.<sup>8,9</sup> The cation sensing mechanism of these probes is based on the change in structure between the spirocyclic and open-cycle forms. Without cations, these probes exist in a non-emissive spirocyclic form. Addition of metal cation leads to spirocycle opening via

0040-4039/\$ - see front matter  $\odot$  2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2008.04.102

a reversible coordination or an irreversible chemical reaction with the probe, resulting in an appearance of orange fluorescence (550–650 nm). These probes show this single channel fluorescence against  $Hg^{2+}$  or  $Fe^{3+}$  and, hence, can detect either  $Hg^{2+}$  or  $Fe^{3+}$ .

Herein, we report that a new rhodamine derivative (1) containing an aza-18-crown-6 moiety (Scheme 1, synthesis<sup>10</sup>) behaves as a dual channel fluorescent probe for  $Hg^{2+}$  and  $Fe^{3+}$ . Compound 1 shows  $Hg^{2+}$ -selective ordinary orange fluorescence (550–650 nm), while showing



Scheme 1. Synthesis of the probe 1. (a) Triethylamine. (b) N,N-Diisopropylethylamine.

<sup>\*</sup> Corresponding author. Tel.: +81 6 6850 6271; fax: +81 6 6850 6273. *E-mail address:* shiraish@cheng.es.osaka-u.ac.jp (Y. Shiraishi).

 $Fe^{3+}$ -selective green fluorescence (490–600 nm). To the best of our knowledge, this is the first example of the rhodamine-based fluorescent probe that shows dual channel fluorescence for two different metal cations.

Figure 1 shows fluorescence spectra ( $\lambda_{ex} = 480 \text{ nm}$ ) of 1 (5 µM) measured in CH<sub>3</sub>CN with respective metal cations (90 equiv). Without cations, 1 is non-fluorescent. Addition of Hg<sup>2+</sup>, however, leads to an appearance of orange fluorescence at 578 nm (fluorescence enhancement: 45-fold, Fig. S1<sup>10</sup>). In contrast, addition of Fe<sup>3+</sup> creates a remarkably enhanced green fluorescence at 525 nm (fluorescence enhancement: 378-fold, Fig. S1<sup>10</sup>). These data clearly indicate that probe 1 detects Hg<sup>2+</sup> and Fe<sup>3+</sup> with two different fluorescence channels.

Figure 2 shows the results of fluorescence titration of 1 with Hg<sup>2+</sup> and Fe<sup>3+</sup>. Hg<sup>2+</sup> addition (Fig. 2a) leads to a monotonous increase in the orange fluorescence (578 nm), where the increase is saturated with 12 equiv of Hg<sup>2+,11</sup> This emission behavior is similar to that for early-reported rhodamine-based Hg<sup>2+</sup> probes.<sup>8</sup> As shown in Figure 2b, addition of <10 equiv of Fe<sup>3+</sup> creates similar emission at ca. 575 nm. Further Fe<sup>3+</sup> addition, however, leads to blue-shift of the emission, along with a drastic intensity increase, where the emission color changes from pale orange to green (Fig. S2<sup>10</sup>). The blue-shift and enhancement of the emission stop upon the addition of 90 equiv of Fe<sup>3+</sup> (Fig. 2b).<sup>11</sup> It must be noted that the Fe<sup>3+</sup>-selective 'green' emission is the first example among the rhodamine-based probes.<sup>9</sup>

As shown in Figure 3, without cations, 1 scarcely shows an absorption at 500–600 nm, indicating that 1 exists as a spirocycle-closed form.<sup>8,9</sup> This is confirmed by a distinctive spirocycle carbon shift at 64.81 ppm in the <sup>13</sup>C NMR spectrum of  $1.^{10}$  Hg<sup>2+</sup> addition leads to an appearance of strong 556 nm absorption, along with a clear color change from colorless to pink, as is observed for ordinary rhodamine-based probes.<sup>8,9</sup> Fe<sup>2+</sup>, Cu<sup>2+</sup>, and Pb<sup>2+</sup> show minor absorption increase, whereas other metal cations show negligible increase. In contrast, Fe<sup>3+</sup> shows a blue-shifted absorption at 502 nm.



Fig. 1. Fluorescence spectra of 1 (5  $\mu$ M) measured in CH<sub>3</sub>CN with 90 equiv of various metal cations ( $\lambda_{ex} = 480$  nm). Change in fluorescence color (inset).



Fig. 2. Fluorescence titration of 1 (5  $\mu$ M) in CH<sub>3</sub>CN with (a) Hg<sup>2+</sup> ( $\lambda_{ex} = 510$  nm) and (b) Fe<sup>3+</sup> ( $\lambda_{ex} = 480$  nm). Intensity change (inset).



Fig. 3. Absorption spectra of 1 (5  $\mu$ M) measured in CH<sub>3</sub>CN with respective metal cations (90 equiv). Change in solution color (inset).

Figure 4 shows the results of absorption titration of 1.  $Hg^{2+}$  addition leads to monotonous increase in the 556 nm absorption, which is saturated upon the addition of 12 equiv of  $Hg^{2+}$ . With <10 equiv of  $Fe^{3+}$ , 556 nm absorption also increases. However, with >10 equiv of  $Fe^{3+}$ , the absorption decreases and the 502 nm absorption then increases. This increase is saturated with >90 equiv of  $Fe^{3+}$ .

Excitation spectra of **1** with  $Hg^{2+}$ , monitored at 580 nm (orange emission), appear at 559 nm (Fig. S3<sup>10</sup>), which are similar to the absorption spectra (Fig. 4a). With <10 equiv of Fe<sup>3+</sup>, similar excitation spectra appear at 559 nm (Fig.



а 600-10 ntensity / au 400 200 0 400 450 500 550 600 Wavelength / nm b 1200 90 equiv Intensity / au 800 400 8 0 400 600 450 500 550 Wavelength / nm

Fig. 4. Absorption titration of 1 (5  $\mu$ M) in CH<sub>3</sub>CN with (a) Hg<sup>2+</sup> and (b) Fe<sup>3+</sup>. Change in absorbance (inset).

5a). However, with >10 equiv of Fe<sup>3+</sup>, this band decreases and a blue-shifted band appears at 450–550 nm; with 90 equiv of Fe<sup>3+</sup>, only the 505 nm band remains. The appearance of the blue-shifted band is more apparent when the spectra are monitored at 530 nm (green emission; Fig. 5b): excitation band blue-shifts continuously upon Fe<sup>3+</sup> addition. These suggest that the respective orange and green emissions originate from different ground state species.

Hill analysis of the fluorescence titration data (578 nm) obtained with Hg<sup>2+</sup> (Fig. S4<sup>10</sup>) provides a Hill coefficient n = 2.0 with association constant log  $K_a = 8.7$ , indicative of the formation of  $1 \cdot (\text{Hg}^{2+})_2$  complex.<sup>12</sup> In contrast, analysis of the titration data obtained with Fe<sup>3+</sup> (525 nm; Figure S4<sup>10</sup>) provides an unresolved coefficient n = 3.3 (log  $K_a = 12.6$ ). This indicates that **1** associates with Fe<sup>3+</sup> in a complicated stoichiometry.

IR analysis of 1 in CH<sub>3</sub>CN (Fig. S5<sup>10</sup>) reveals that both amide carbonyl (C=O) and ether (C-O) absorptions of 1 at 1684.5 and 1120.5 cm<sup>-1</sup> shift to lower frequency upon the addition of Hg<sup>2+</sup> (1632.9 and 1100.2 cm<sup>-1</sup>) and Fe<sup>3+</sup> (1635.8 and 1101.6 cm<sup>-1</sup>). This indicates that both carbonyl and azacrown ether moiety are involved in metal cation coordination.<sup>9d,13</sup> <sup>1</sup>H NMR titration in CD<sub>3</sub>CN (Fig. S6<sup>10</sup>) shows that both aromatic and azacrown ether protons of 1 shift downfield and become broader upon the addition of Fe<sup>3+</sup> or Hg<sup>2+</sup>. This is due to the decrease in

Fig. 5. Excitation spectra of 1 (5  $\mu$ M) in CH<sub>3</sub>CN with Fe<sup>3+</sup> monitored at (a) 580 nm and (b) 530 nm.

electron density of these moieties, indicating that 1 actually coordinates with  $Hg^{2+}$  or  $Fe^{3+}.^{9d,13}$  In addition, upon addition of  $Hg^{2+}$  or  $Fe^{3+}$ ,  $CH_3$  proton of **1** (1.12 ppm) decreases, and new protons appear downfield, indicating that the coordination of 1 with  $Hg^{2+}$  or  $Fe^{3+}$  leads to spirocycle opening.<sup>9d</sup> Addition of ethylenediamine to the solution of 1 containing either  $Hg^{2+}$  or  $Fe^{3+}$  leads to the disappearance of both absorption and emission spectra, indicating that 1 coordinates reversibly with these cations.<sup>8,9,13</sup> The emission behaviors of 1 are therefore explained by the ordinary spirocycle opening mechanism:<sup>8,9,13</sup> coordination of metal cations with the amide carbonyl and azacrown ether moieties of 1 leads to the formation of spirocycle-opened emitting species (orange emitter). The formation of the 'green' emitter of 1 upon  $Fe^{3+}$ addition involves a different mechanism in addition to the spirocycle opening mechanism.

Recently, we found that a rhodamine derivative containing an ethylenediamine-N,N-diacetic acid moiety shows blue-shifted absorption and emission spectra upon Cu<sup>2+</sup> addition.<sup>14</sup> Inherent aggregation properties of rhodamine in solution<sup>15</sup> and the spectral data imply that the emitting species for the blue-shifted emission is an 'aggregate' of multiple molecules formed by coordination association with multiple Cu<sup>2+</sup> ions. The absorption and emission behaviors of the rhodamine derivative are similar to those of **1** with Fe<sup>3+</sup>; therefore, the green emission of **1** upon  $Fe^{3+}$  addition may probably be explained by  $Fe^{3+}$ -induced aggregation mechanism. This assumption is supported by some spectral data: Hill analysis of the fluorescence titration data shows unresolved stoichiometry (n = 3.3; Fig.  $S4^{10}$ ); absorption spectra do not show clear isosbestic point (Fig. 4b). These indicate that 1 aggregates via coordination association with multiple  $Fe^{3+}$  ions. The appearances of the blue-shifted excitation spectra (Fig. 5) clearly indicate that the green emission is formed via direct photoexcitation of the ground state aggregates. In addition, saturation of the green emission increase after  $Fe^{3+}$  addition (296 K) requires >5 h, while the orange emission increase after  $Hg^{2+}$  addition saturates relatively faster (<1 h) (Fig. S7<sup>10</sup>). As reported,<sup>16</sup> rhodamine aggregation is enhanced at higher temperature due to the decrease in solvation interaction. The green emission increase after Fe<sup>3+</sup> addition occurs rapidly at higher temperature (Fig. S7<sup>10</sup>). These findings clearly indicate that the aggregation interaction is involved in the formation of the green emitter.

In conclusion, we found that a new rhodamine derivative (1) containing an azacrown ether moiety shows  $Fe^{3+}$ and  $Hg^{2+}$ -selective dual channel fluorescence in  $CH_3CN$ .<sup>17</sup> This is the first rhodamine-based probe showing dual channel fluorescence for different metal cations. Although the detailed mechanism for the  $Fe^{3+}$ -selective green emission is unclear, the results presented here may contribute to the design of more useful rhodamine-based fluorescent probes for heavy and transition metal cations.

## Acknowledgements

This work is partly supported by Grants-in-Aid for Scientific Research (No. 19760536) from the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT). We are grateful to the Division of Chemical Engineering for the Lend-Lease Laboratory System.

#### Supplementary data

Supplementary data (materials, synthesis, methods, and Figures) associated with this article can be found, in the online version, at doi:10.1016/j.tetlet.2008.04.102.

#### **References and notes**

- (a) Fluorescent Chemosensors for Ion and Molecule Recognition; Czarnik, A. W., Ed.; American Chemical Society: Washington, DC, 1993; (b) de Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Huxley, A. J. M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E. Chem. Rev. 1997, 97, 1515–1566; (c) Valeur, B.; Leray, I. Coord. Chem. Rev. 2000, 205, 3–40; (d) Martínez-Máñez, R.; Sancanón, F. Chem. Rev. 2003, 103, 4419–4476; (e) Callan, J. F.; de Silva, A. P.; Magri, D. C. Tetrahedron 2005, 61, 8551–8588; (f) Basabe-Desmonts, L.; Reinhoudt, D. N.; Crego-Calama, M. Chem. Soc. Rev. 2007, 36, 993–1017.
- (a) Amendola, V.; Fabbrizzi, L.; Licchelli, M.; Mangano, C.; Pallavicini, P.; Parodi, L.; Poggi, A. Coord. Chem. Rev. 1999, 190– 192, 649–669; (b) Prodi, L.; Bolletta, F.; Montalti, M.; Zaccheroni, N. Coord. Chem. Rev. 2000, 205, 59–83; (c) Rurak, K. Spectrochim. Acta A 2001, 57, 2161–2195.

- 3. Boening, D. W. Chemosphere 2000, 40, 1335-1351.
- Aisen, P.; Wessling-Resnick, M.; Leibold, E. A. Curr. Opin. Chem. Biol. 1999, 3, 200–206.
- For Hg<sup>2+</sup>: (a) Ono, A.; Togashi, H. Angew. Chem., Int. Ed. 2004, 43, 4300–4302; (b) Moon, S.-Y.; Youn, N. J.; Park, S. M.; Chang, S.-K. J. Org. Chem. 2005, 70, 2394–2397; (c) Ha-Thi, M.-H.; Penhoat, M.; Michelet, V.; Leray, I. Org. Lett. 2007, 9, 1133–1136; (d) Praveen, L.; Ganga, V. B.; Thirumalai, R.; Sreeja, T.; Reddy, M. L. P.; Luxmi Varma, R. Inorg. Chem. 2007, 46, 6277–6282; For Fe<sup>3+</sup>: (e) Wolf, C.; Mei, X.; Rokadia, H. K. Tetrahedron Lett. 2004, 45, 7867–7871; (f) Tumambac, G. E.; Rosencrance, C. M.; Wolf, C. Tetrahedron 2004, 60, 11293–11297; (g) Kikkeri, R.; Traboulsi, H.; Humbert, N.; Gumienna-Kontecka, E.; Arad-Yellin, R.; Melman, G.; Elhabiri, M.; Albrecht-Gary, A.-M.; Shanzer, A. Inorg. Chem. 2007, 46, 2485– 2497.
- For Hg<sup>2+</sup>: (a) Descalzo, A.; Martínez-Máñez, R.; Radeglia, R.; Rurack, K.; Soto, J. J. Am. Chem. Soc. 2003, 125, 3418–3419; (b) Guo, X.-F.; Qian, X.-H.; Jia, L.-H. J. Am. Chem. Soc. 2004, 126, 2272–2273; (c) Zhang, H.; Han, L.-F.; Zachariasse, K. A.; Jiang, Y.-B. Org. Lett. 2005, 7, 4217–4220; (d) Avirah, R. R.; Jyothish, K.; Ramaiah, D. Org. Lett. 2007, 9, 121–124; (e) Yoon, S.; Miller, E. W.; He, Q.; Do, P. H.; Chang, C. J. Angew. Chem., Int. Ed. 2007, 46, 6658–6661; For Fe<sup>3+</sup>: (f) Hua, J.; Wang, Y.-G. Chem. Lett. 2005, 34, 98–99; (g) Bricks, J. L.; Kovalchuk, A.; Trieflinger, C.; Nofz, M.; Buschel, M.; Tolmachev, A. I.; Daub, J.; Rurack, K. J. Am. Chem. Soc. 2005, 127, 13522–13529.
- Lakowicz, J. R. Principles of Fluorescence Spectroscopy, 3rd ed.; Springer: New York, 2006; pp 67–69.
- For Hg<sup>2+</sup>: (a) Yang, Y.-K.; Yook, K.-J.; Tae, J. J. Am. Chem. Soc. 2005, 127, 16760–16761; (b) Zheng, H.; Qian, Z.-H.; Xu, L.; Yuan, F.-F.; Lan, L.-D.; Xu, J.-G. Org. Lett. 2006, 8, 859–861; (c) Wu, J.-S.; Hwang, I.-C.; Kim, K. S.; Kim, J. S. Org. Lett. 2007, 9, 907–910; (d) Lee, M. H.; Wu, J.-S.; Lee, J. W.; Jung, J. H.; Kim, J. S. Org. Lett. 2007, 9, 2501–2504; (e) Yang, H.; Zhou, Z.-G.; Huang, K.-W.; Yu, M.-X.; Li, F.-Y.; Yi, T.; Huang, C.-H. Org. Lett. 2007, 9, 4729–4732; (f) Wu, D.; Huang, W.; Duan, C.-Y.; Lin, Z.-H.; Meng, Q.-J. Inorg. Chem. 2007, 46, 1538–1540; (g) Soh, J. H.; Swamy, K. M. K.; Kim, S. K.; Kim, S.; Lee, S.-H.; Yoon, J. Tetrahedron Lett. 2007, 48, 5966– 5969.
- For Fe<sup>3+</sup>: (a) Xiang, Y.; Tong, A.-J. Org. Lett. 2006, 8, 1549–1552; (b) Zhang, M.; Gao, Y.-H.; Li, M.-Y.; Yu, M.-X.; Li, F.-Y.; Li, L.; Zhu, M.-W.; Zhang, J.-P.; Yi, T.; Huang, C.-H. Tetrahedron Lett. 2007, 48, 3709–3712; (c) Bae, S.; Tae, J. Tetrahedron Lett. 2007, 48, 5389–5392; (d) Zhang, X.; Shiraishi, Y.; Hirai, T. Tetrahedron Lett. 2007, 48, 5455–5459; (e) Mao, J.; Wang, L.-N.; Dou, W.; Tang, X.-L.; Yan, Y.; Liu, W.-S. Org. Lett. 2007, 9, 4567–4570.
- 10. See the Supplementary Data.
- 11. Fluorescence quantum yields of **1** with 12 equiv of Hg<sup>2+</sup> and 90 equiv of Fe<sup>3+</sup> are determined to be 0.15 and 0.49, respectively, based on fluorescein standard ( $\Phi_{\rm F} = 0.85$  in 0.1 M NaOH): Parker, C. A.; Rees, W. T. *Analyst* **1960**, *85*, 587–600.
- Hennrich, G.; Rurack, K.; Spieles, M. Eur. J. Org. Chem. 2006, 516– 521.
- Kwon, J. Y.; Jang, Y. J.; Lee, Y. J.; Kim, K. M.; Seo, M. S.; Nam, W.; Yoon, J. J. Am. Chem. Soc. 2005, 127, 10107–10111.
- 14. Zhang, X.; Shiraishi, Y.; Hirai, T. Org. Lett. 2007, 9, 5039-5042.
- (a) Rohatgi, K. K.; Singhal, G. S. J. Phys. Chem. 1966, 70, 1695–1701;
  (b) Selwyn, J. E.; Steinfeld, J. I. J. Phys. Chem. 1972, 76, 762–774; (c) López Arbeloa, I.; Ruiz Ojeda, P. Chem. Phys. Lett. 1982, 87, 556– 560; (d) Valdes-Aguilera, O.; Neckers, D. C. Acc. Chem. Res. 1989, 22, 171–177.
- (a) Ruiz Ojeda, P.; Katime Amashta, I. A.; Ramón Ochoa, J.; López Arbeloa, I. J. Chem. Soc., Faraday Trans. 2 1988, 84, 1–8; (b) Kemnitz, K.; Yoshihara, K. J. Phys. Chem. 1991, 95, 6095–6104.
- 17. The probe 1 does not work in aqueous medium: the fluorescence of 1 with  $Fe^{3+}$  or  $Hg^{2+}$  is completely quenched by an addition of 5% water to CH<sub>3</sub>CN.