

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 49 (2008) 4178–4181

Fe(III)- and Hg(II)-selective dual channel fluorescence of a rhodamine–azacrown ether conjugate

Xuan Zhang, Yasuhiro Shiraishi *, Takayuki Hirai

Research Center for Solar Energy Chemistry, and Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan

> Received 7 March 2008; revised 12 April 2008; accepted 17 April 2008 Available online 22 April 2008

Abstract

A rhodamine–azacrown ether conjugate (1) demonstrates Fe(III)-selective green fluorescence, while showing Hg(II)-selective orange fluorescence. This is the first example of rhodamine-based fluorescent probe that shows dual channel fluorescence for two different metal cations.

© 2008 Elsevier Ltd. All rights reserved.

Fluorometric detection of ionic species has attracted a great deal of attention.^{[1](#page-3-0)} Of particular interest is the development of fluorescent probes for heavy and transition metal cations, such as Hg^{2+} and Fe^{3+} , due to their biological and environmental importance.^{[2](#page-3-0)} Hg^{2+} is one of the most hazardous components in the environment,^{[3](#page-3-0)} and Fe^{3+} plays a pivotal role in many biochemical processes in a cellular level.[4](#page-3-0) A number of fluorescent probes for the detection of Hg^{2+} and Fe³⁺ have been proposed so far.^{[5,6](#page-3-0)} However, most of these probes show fluorescence quenching (turn-off) response,^{[5](#page-3-0)} and fluorescent probes that show fluorescence enhancement (turn-on) response are still rare.[6](#page-3-0)

Rhodamine is a dye used extensively as a fluorescent labeling reagent due to its excellent photophysical properties, such as long absorption and emission wavelengths elongated to visible region, high absorption coefficient, and high fluorescence quantum yield.⁷ Recently, various rhodamine-based turn-on fluorescent probes for Hg^{2+} or $Fe³⁺$ have been proposed.^{[8,9](#page-3-0)} The cation sensing mechanism of these probes is based on the change in structure between the spirocyclic and open-cycle forms. Without cations, these probes exist in a non-emissive spirocyclic form. Addition of metal cation leads to spirocycle opening via

0040-4039/\$ - see front matter © 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2008.04.102

a reversible coordination or an irreversible chemical reaction with the probe, resulting in an appearance of orange fluorescence (550–650 nm). These probes show this single channel fluorescence against Hg^{2+} or Fe^{3+} and, hence, can detect either Hg^{2+} or Fe^{3+} .

Herein, we report that a new rhodamine derivative (1) containing an aza-18-crown-6 moiety (Scheme 1, synthe $sis¹⁰$) behaves as a dual channel fluorescent probe for Hg^{2+} and Fe³⁺. Compound 1 shows Hg^{2+} -selective ordinary orange fluorescence (550–650 nm), while showing

Scheme 1. Synthesis of the probe 1. (a) Triethylamine. (b) N,N-Diisopropylethylamine.

Corresponding author. Tel.: $+81$ 6 6850 6271; fax: $+81$ 6 6850 6273. E-mail address: shiraish@cheng.es.osaka-u.ac.jp (Y. Shiraishi).

 $Fe³⁺$ -selective green fluorescence (490–600 nm). To the best of our knowledge, this is the first example of the rhodamine-based fluorescent probe that shows dual channel fluorescence for two different metal cations.

Figure 1 shows fluorescence spectra (λ_{ex} = 480 nm) of 1 (5 μ M) measured in CH₃CN with respective metal cations (90 equiv). Without cations, 1 is non-fluorescent. Addition of Hg^{2+} , however, leads to an appearance of orange fluorescence at 578 nm (fluorescence enhancement: 45-fold, [Fig.](#page-3-0) $S1^{10}$ $S1^{10}$). In contrast, addition of Fe³⁺ creates a remarkably enhanced green fluorescence at 525 nm (fluorescence enhancement: 378 -fold, [Fig.](#page-3-0) $S1^{10}$ $S1^{10}$). These data clearly indicate that probe 1 detects Hg^{2+} and Fe^{3+} with two different fluorescence channels.

Figure 2 shows the results of fluorescence titration of 1 with Hg^{2+} and Fe^{3+} . Hg^{2+} addition (Fig. 2a) leads to a monotonous increase in the orange fluorescence (578 nm), where the increase is saturated with 12 equiv of Hg^{2+11} Hg^{2+11} Hg^{2+11} This emission behavior is similar to that for early-reported rhodamine-based Hg^{2+} probes.^{[8](#page-3-0)} As shown in Figure 2b, addition of ≤ 10 equiv of Fe³⁺ creates similar emission at ca. 575 nm. Further Fe^{3+} addition, however, leads to blue-shift of the emission, along with a drastic intensity increase, where the emission color changes from pale orange to green ([Fig.](#page-3-0) $S2^{10}$ $S2^{10}$). The blue-shift and enhancement of the emission stop upon the addition of 90 equiv of Fe^{3+} (Fig. 2b).^{[11](#page-3-0)} It must be noted that the Fe^{3+} -selective 'green' emission is the first example among the rhodamine-based probes.^{[9](#page-3-0)}

As shown in Figure 3, without cations, 1 scarcely shows an absorption at 500–600 nm, indicating that 1 exists as a spirocycle-closed form.^{[8,9](#page-3-0)} This is confirmed by a distinctive spirocycle carbon shift at 64.81 ppm in the 13 C NMR spectrum of $1.^{10}$ $1.^{10}$ $1.^{10}$ Hg²⁺ addition leads to an appearance of strong 556 nm absorption, along with a clear color change from colorless to pink, as is observed for ordinary rhoda-mine-based probes.^{[8,9](#page-3-0)} Fe²⁺, Cu²⁺, and Pb²⁺ show minor absorption increase, whereas other metal cations show negligible increase. In contrast, $Fe³⁺$ shows a blue-shifted absorption at 502 nm.

Fig. 1. Fluorescence spectra of 1 (5 μ M) measured in CH₃CN with 90 equiv of various metal cations (λ_{ex} = 480 nm). Change in fluorescence color (inset).

Fig. 2. Fluorescence titration of 1 (5 μ M) in CH₃CN with (a) Hg²⁺ $(\lambda_{\text{ex}} = 510 \text{ nm})$ and (b) Fe³⁺ ($\lambda_{\text{ex}} = 480 \text{ nm}$). Intensity change (inset).

Fig. 3. Absorption spectra of 1 (5μ M) measured in CH₃CN with respective metal cations (90 equiv). Change in solution color (inset).

[Figure 4](#page-2-0) shows the results of absorption titration of 1. Hg^{2+} addition leads to monotonous increase in the 556 nm absorption, which is saturated upon the addition of 12 equiv of Hg²⁺. With <10 equiv of Fe³⁺, 556 nm absorption also increases. However, with >10 equiv of $Fe³⁺$, the absorption decreases and the 502 nm absorption then increases. This increase is saturated with >90 equiv of $Fe³⁺$.

Excitation spectra of 1 with Hg^{2+} , monitored at 580 nm (orange emission), appear at 559 nm [\(Fig.](#page-3-0) $S3^{10}$ $S3^{10}$), which are similar to the absorption spectra [\(Fig. 4](#page-2-0)a). With <10 equiv of $Fe³⁺$, similar excitation spectra appear at 559 nm [\(Fig.](#page-2-0)

Fig. 4. Absorption titration of 1 (5 μ M) in CH₃CN with (a) Hg²⁺ and (b) $Fe³⁺$. Change in absorbance (inset).

5a). However, with >10 equiv of Fe³⁺, this band decreases and a blue-shifted band appears at 450–550 nm; with 90 equiv of Fe^{3+} , only the 505 nm band remains. The appearance of the blue-shifted band is more apparent when the spectra are monitored at 530 nm (green emission; Fig. 5b): excitation band blue-shifts continuously upon $Fe³⁺$ addition. These suggest that the respective orange and green emissions originate from different ground state species.

Hill analysis of the fluorescence titration data (578 nm) obtained with Hg^{2+} ([Fig.](#page-3-0) $S4^{10}$ $S4^{10}$) provides a Hill coefficient $n = 2.0$ with association constant log $K_a = 8.7$, indicative of the formation of $1 \cdot (\text{Hg}^{2+})_2$ complex.^{[12](#page-3-0)} In contrast, analysis of the titration data obtained with $Fe³⁺$ (525 nm; Fig[ure](#page-3-0) $S4^{10}$ $S4^{10}$) provides an unresolved coefficient $n = 3.3$ (log $K_a = 12.6$). This indicates that 1 associates with Fe³⁺ in a complicated stoichiometry.

IR analysis of 1 in CH₃CN [\(Fig.](#page-3-0) $S5^{10}$ $S5^{10}$) reveals that both amide carbonyl $(C=O)$ and ether $(C-O)$ absorptions of 1 at 1684.5 and 1120.5 cm⁻¹ shift to lower frequency upon the addition of Hg²⁺ (1632.9 and 1100.2 cm⁻¹) and Fe³⁺ $(1635.8 \text{ and } 1101.6 \text{ cm}^{-1})$. This indicates that both carbonyl and azacrown ether moiety are involved in metal cation coordination.^{9d,13} ¹H NMR titration in CD₃CN (Fig. $S6^{10}$) shows that both aromatic and azacrown ether protons of 1 shift downfield and become broader upon the addition of Fe^{3+} or Hg^{2+} . This is due to the decrease in

Fig. 5. Excitation spectra of 1 (5 μ M) in CH₃CN with Fe³⁺ monitored at (a) 580 nm and (b) 530 nm.

electron density of these moieties, indicating that 1 actually coordinates with Hg^{2+} or Fe^{3+} . $9d,13$ In addition, upon addition of Hg²⁺ or Fe³⁺, CH₃ proton of 1 (1.12 ppm) decreases, and new protons appear downfield, indicating that the coordination of 1 with Hg^{2+} or Fe^{3+} leads to spirocycle opening.9d Addition of ethylenediamine to the solution of 1 containing either Hg^{2+} or Fe^{3+} leads to the disappearance of both absorption and emission spectra, indicating that 1 coordinates reversibly with these cations. $8,9,13$ The emission behaviors of 1 are therefore explained by the ordinary spirocycle opening mechanism:[8,9,13](#page-3-0) coordination of metal cations with the amide carbonyl and azacrown ether moieties of 1 leads to the formation of spirocycle-opened emitting species (orange emitter). The formation of the 'green' emitter of 1 upon $Fe³⁺$ addition involves a different mechanism in addition to the spirocycle opening mechanism.

Recently, we found that a rhodamine derivative containing an ethylenediamine-N,N-diacetic acid moiety shows blue-shifted absorption and emission spectra upon Cu^{2+} addition[.14](#page-3-0) Inherent aggregation properties of rhodamine in solution^{[15](#page-3-0)} and the spectral data imply that the emitting species for the blue-shifted emission is an 'aggregate' of multiple molecules formed by coordination association with multiple Cu^{2+} ions. The absorption and emission behaviors of the rhodamine derivative are similar to those of 1 with Fe^{3+} ; therefore, the green emission of 1 upon

 $Fe³⁺$ addition may probably be explained by $Fe³⁺$ -induced aggregation mechanism. This assumption is supported by some spectral data: Hill analysis of the fluorescence titration data shows unresolved stoichiometry ($n = 3.3$; Fig. $S4^{10}$); absorption spectra do not show clear isosbestic point ([Fig. 4b](#page-2-0)). These indicate that 1 aggregates via coordination association with multiple $Fe³⁺$ ions. The appearances of the blue-shifted excitation spectra ([Fig. 5](#page-2-0)) clearly indicate that the green emission is formed via direct photoexcitation of the ground state aggregates. In addition, saturation of the green emission increase after Fe^{3+} addition (296 K) requires >5 h, while the orange emission increase after Hg^{2+} addition saturates relatively faster (<1 h) (Fig. $S7^{10}$). As reported,¹⁶ rhodamine aggregation is enhanced at higher temperature due to the decrease in solvation interaction. The green emission increase after $Fe³⁺$ addition occurs rapidly at higher temperature (Fig. $S7^{10}$). These findings clearly indicate that the aggregation interaction is involved in the formation of the green emitter.

In conclusion, we found that a new rhodamine derivative (1) containing an azacrown ether moiety shows $Fe³⁺$ and Hg^{2+} -selective dual channel fluorescence in CH₃CN.¹⁷ This is the first rhodamine-based probe showing dual channel fluorescence for different metal cations. Although the detailed mechanism for the $Fe³⁺$ -selective green emission is unclear, the results presented here may contribute to the design of more useful rhodamine-based fluorescent probes for heavy and transition metal cations.

Acknowledgements

This work is partly supported by Grants-in-Aid for Scientific Research (No. 19760536) from the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT). We are grateful to the Division of Chemical Engineering for the Lend-Lease Laboratory System.

Supplementary data

Supplementary data (materials, synthesis, methods, and Figures) associated with this article can be found, in the online version, at [doi:10.1016/j.tetlet.2008.04.102](http://dx.doi.org/10.1016/j.tetlet.2008.04.102).

References and notes

- 1. (a) Fluorescent Chemosensors for Ion and Molecule Recognition; Czarnik, A. W., Ed.; American Chemical Society: Washington, DC, 1993; (b) de Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Huxley, A. J. M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E. Chem. Rev. 1997, 97, 1515–1566; (c) Valeur, B.; Leray, I. Coord. Chem. Rev. 2000, 205, 3–40; (d) Martinez-Máñez, R.; Sancanón, F. Chem. Rev. 2003, 103, 4419–4476; (e) Callan, J. F.; de Silva, A. P.; Magri, D. C. Tetrahedron 2005, 61, 8551–8588; (f) Basabe-Desmonts, L.; Reinhoudt, D. N.; Crego-Calama, M. Chem. Soc. Rev. 2007, 36, 993–1017.
- 2. (a) Amendola, V.; Fabbrizzi, L.; Licchelli, M.; Mangano, C.; Pallavicini, P.; Parodi, L.; Poggi, A. Coord. Chem. Rev. 1999, 190-192, 649–669; (b) Prodi, L.; Bolletta, F.; Montalti, M.; Zaccheroni, N. Coord. Chem. Rev. 2000, 205, 59–83; (c) Rurak, K. Spectrochim. Acta A 2001, 57, 2161–2195.
- 3. Boening, D. W. Chemosphere 2000, 40, 1335–1351.
- 4. Aisen, P.; Wessling-Resnick, M.; Leibold, E. A. Curr. Opin. Chem. Biol. 1999, 3, 200–206.
- 5. For Hg^{2+} : (a) Ono, A.; Togashi, H. Angew. Chem., Int. Ed. 2004, 43, 4300–4302; (b) Moon, S.-Y.; Youn, N. J.; Park, S. M.; Chang, S.-K. J. Org. Chem. 2005, 70, 2394–2397; (c) Ha-Thi, M.-H.; Penhoat, M.; Michelet, V.; Leray, I. Org. Lett. 2007, 9, 1133–1136; (d) Praveen, L.; Ganga, V. B.; Thirumalai, R.; Sreeja, T.; Reddy, M. L. P.; Luxmi Varma, R. Inorg. Chem. 2007, 46, 6277–6282; For Fe3+: (e) Wolf, C.; Mei, X.; Rokadia, H. K. Tetrahedron Lett. 2004, 45, 7867–7871; (f) Tumambac, G. E.; Rosencrance, C. M.; Wolf, C. Tetrahedron 2004, 60, 11293–11297; (g) Kikkeri, R.; Traboulsi, H.; Humbert, N.; Gumienna-Kontecka, E.; Arad-Yellin, R.; Melman, G.; Elhabiri, M.; Albrecht-Gary, A.-M.; Shanzer, A. Inorg. Chem. 2007, 46, 2485– 2497.
- 6. For Hg^{2+} : (a) Descalzo, A.; Martinez-Máñez, R.; Radeglia, R.; Rurack, K.; Soto, J. J. Am. Chem. Soc. 2003, 125, 3418–3419; (b) Guo, X.-F.; Qian, X.-H.; Jia, L.-H. J. Am. Chem. Soc. 2004, 126, 2272–2273; (c) Zhang, H.; Han, L.-F.; Zachariasse, K. A.; Jiang, Y.- B. Org. Lett. 2005, 7, 4217–4220; (d) Avirah, R. R.; Jyothish, K.; Ramaiah, D. Org. Lett. 2007, 9, 121–124; (e) Yoon, S.; Miller, E. W.; He, Q.; Do, P. H.; Chang, C. J. Angew. Chem., Int. Ed. 2007, 46, 6658–6661; For Fe³⁺: (f) Hua, J.; Wang, Y.-G. Chem. Lett. 2005, 34, 98–99; (g) Bricks, J. L.; Kovalchuk, A.; Trieflinger, C.; Nofz, M.; Buschel, M.; Tolmachev, A. I.; Daub, J.; Rurack, K. J. Am. Chem. Soc. 2005, 127, 13522-13529.
- 7. Lakowicz, J. R. Principles of Fluorescence Spectroscopy, 3rd ed.; Springer: New York, 2006; pp 67–69.
- 8. For Hg^{2+} : (a) Yang, Y.-K.; Yook, K.-J.; Tae, J. *J. Am. Chem. Soc.* 2005, 127, 16760–16761; (b) Zheng, H.; Qian, Z.-H.; Xu, L.; Yuan, F.- F.; Lan, L.-D.; Xu, J.-G. Org. Lett. 2006, 8, 859–861; (c) Wu, J.-S.; Hwang, I.-C.; Kim, K. S.; Kim, J. S. Org. Lett. 2007, 9, 907–910; (d) Lee, M. H.; Wu, J.-S.; Lee, J. W.; Jung, J. H.; Kim, J. S. Org. Lett. 2007, 9, 2501–2504; (e) Yang, H.; Zhou, Z.-G.; Huang, K.-W.; Yu, M.-X.; Li, F.-Y.; Yi, T.; Huang, C.-H. Org. Lett. 2007, 9, 4729–4732; (f) Wu, D.; Huang, W.; Duan, C.-Y.; Lin, Z.-H.; Meng, Q.-J. Inorg. Chem. 2007, 46, 1538–1540; (g) Soh, J. H.; Swamy, K. M. K.; Kim, S. K.; Kim, S.; Lee, S.-H.; Yoon, J. Tetrahedron Lett. 2007, 48, 5966-5969.
- 9. For Fe^{3+} : (a) Xiang, Y.; Tong, A.-J. Org. Lett. 2006, 8, 1549–1552; (b) Zhang, M.; Gao, Y.-H.; Li, M.-Y.; Yu, M.-X.; Li, F.-Y.; Li, L.; Zhu, M.-W.; Zhang, J.-P.; Yi, T.; Huang, C.-H. Tetrahedron Lett. 2007, 48, 3709–3712; (c) Bae, S.; Tae, J. Tetrahedron Lett. 2007, 48, 5389–5392; (d) Zhang, X.; Shiraishi, Y.; Hirai, T. Tetrahedron Lett. 2007, 48, 5455–5459; (e) Mao, J.; Wang, L.-N.; Dou, W.; Tang, X.-L.; Yan, Y.; Liu, W.-S. Org. Lett. 2007, 9, 4567–4570.
- 10. See the Supplementary Data.
- 11. Fluorescence quantum yields of 1 with 12 equiv of Hg^{2+} and 90 equiv of $Fe³⁺$ are determined to be 0.15 and 0.49, respectively, based on fluorescein standard ($\Phi_F = 0.85$ in 0.1 M NaOH): Parker, C. A.; Rees, W. T. Analyst 1960, 85, 587–600.
- 12. Hennrich, G.; Rurack, K.; Spieles, M. Eur. J. Org. Chem. 2006, 516– 521.
- 13. Kwon, J. Y.; Jang, Y. J.; Lee, Y. J.; Kim, K. M.; Seo, M. S.; Nam, W.; Yoon, J. J. Am. Chem. Soc. 2005, 127, 10107-10111.
- 14. Zhang, X.; Shiraishi, Y.; Hirai, T. Org. Lett. 2007, 9, 5039– 5042.
- 15. (a) Rohatgi, K. K.; Singhal, G. S. J. Phys. Chem. 1966, 70, 1695–1701; (b) Selwyn, J. E.; Steinfeld, J. I. J. Phys. Chem. 1972, 76, 762–774; (c) López Arbeloa, I.; Ruiz Ojeda, P. Chem. Phys. Lett. 1982, 87, 556– 560; (d) Valdes-Aguilera, O.; Neckers, D. C. Acc. Chem. Res. 1989, 22, 171–177.
- 16. (a) Ruiz Ojeda, P.; Katime Amashta, I. A.; Ramón Ochoa, J.; López Arbeloa, I. J. Chem. Soc., Faraday Trans. 2 1988, 84, 1–8; (b) Kemnitz, K.; Yoshihara, K. J. Phys. Chem. 1991, 95, 6095–6104.
- 17. The probe 1 does not work in aqueous medium: the fluorescence of 1 with Fe^{3+} or Hg^{2+} is completely quenched by an addition of 5% water to CH₃CN.